379 research outputs found

    Early Retirement and Inequality in Britain and Germany: How Important Is Health?

    Get PDF
    Both health and income inequalities have been shown to be much greater in Britain than in Germany. One of the main reasons seems to be the difference in the relative position of the retired, who, in Britain, are much more concentrated in the lower income groups. Inequality analysis reveals that while the distribution of health shocks is more concentrated among those on low incomes in Britain, early retirement is more concentrated among those on high incomes. In contrast, in Germany, both health shocks and early retirement are more concentrated among those with low incomes. We use comparable longitudinal data sets from Britain and Germany to estimate hazard models of the effect of health on early retirement. The hazard models show that health is a key determinant of the retirement hazard for both men and women in Britain and Germany. The size of the health effect appears large compared to the other variables. Designing financial incentives to encourage people to work for longer may not be sufficient as a policy tool if people are leaving the labour market involuntarily due to health problems.health, early retirement, hazard models

    Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events

    Get PDF
    The development of NWP models with grid spacing down to 1 km should produce more realistic forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipitation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the skill varies with spatial scale. A verification method will be described in which skill is determined from a comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean comparison. The results show that the 1-km model was the most skillful over all but the smallest scales (approximately <10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improvement occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model did not improve much on the 12-km model because of the difficulties of representing convection at that resolution, which was accentuated by the spinup from 12-km fields

    Realism of rainfall in a very high-resolution regional climate model

    Get PDF
    The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change. In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall. Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection

    Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan

    Get PDF
    A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained

    Predictability of frontal waves and cyclones

    Get PDF
    The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in MOGREPS-15, the global 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The number density of cyclonic features is found to decline with increasing lead-time, with analysis fields containing weak features which are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area averaged enstrophy with increasing lead time. Both feature number density and area averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier Skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximised increases with lead time from 650km at 12h to 950km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity

    The utility of convection-permitting ensembles for the prediction of stationary convective bands

    Get PDF
    This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the UK. For each case, a 2.2-km grid-length 12-member ensemble and 1.5-km grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it

    Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom

    Get PDF
    With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model

    The value of high-resolution Met Office regional climate models in the simulation of multi-hourly precipitation extremes

    Get PDF
    Open access articleExtreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and 1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales, the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-km RCM, yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi)hourly JJA very extreme events. As accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are generally weaker than in JJA at daily or shorter time scales. Case studies indicate that “gridpoint storms” are one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the realism of 12-km RCM JJA extremes, including short-return-period events, which have return values closer to observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km RCM in the simulation of JJA extremes.Natural Environment Research Council (NERC)UKMONewcastle Universit

    The surprising role of orography in the initiation of an isolated thunderstorm in southern England

    Get PDF
    Many factors, both mesoscale and larger scale, often come together in order for a particular convective initiation to take place. The authors describe a modeling study of a case from the Convective Storms Initiation Project (CSIP) in which a single thunderstorm formed behind a front in the southern United Kingdom. The key features of the case were a tongue of low-level high θw air associated with a forward-sloping split front (overrunning lower θw air above), a convergence line, and a “lid” of high static stability air, which the shower was initially constrained below but later broke through. In this paper, the authors analyze the initiation of the storm, which can be traced back to a region of high ground (Dartmoor) at around 0700 UTC, in more detail using model sensitivity studies with the Met Office Unified Model (MetUM). It is established that the convergence line was initially caused by roughness effects but had a significant thermal component later. Dartmoor had a key role in the development of the thunderstorm. A period of asymmetric flow over the high ground, with stronger low-level descent in the lee, led to a hole in a layer of low-level clouds downstream. The surface solar heating through this hole, in combination with the tongue of low-level high θw air associated with the front, caused the shower to initiate with sufficient lifting to enable it later to break through the lid
    • …
    corecore